Gas and liquid chromatography with mass spectrometric detection

Gas chromatograph

GC-MS animation

Chromatography-Mass Spectrometry

http://www.shsu.edu/~chm_t gc/sounds/sound.html

Key method features

Simultaneous Separation + Identification

Huge amount of information about the sample in single run

Very high selectivity in selected ion monitoring mode (SIM)

Multi-analyte selective and sensitive method can be developed

Ionization Methods

Gas Phase Ionization (mainly for volatile compounds)

Electron impact

Chemical ionization

Ionization in electric field

Liquid Phase Ionization (for large soluble molecules)

Electrospray

Atmospheric pressure chemical ionization (APCI)

Inductively coupled plasma

Ionization Methods

Solid Phase Ionization (for solid matrices)

Laser ablation

Fast atoms bombardment

Matrix-assisted laser desorption/ionization (MALDI)

Electron impact ionization M + e⁻ \rightarrow M⁺ + 2e⁻

Mostly used method for ionization of organic molecules

Ionization energy is usually equal to 70 eV that corresponds to a length of typical chemical bond in organic molecules

Ionization is held in vacuum to avoid formation of ions of atmospheric gases capable to recombine with analyte ions and degrade them

Allows collecting mass spectra containing structural information that can be used for reliable identification of molecules

Electron impact ionization (scheme)

Electron impact ionization

Chemical ionization

$\begin{array}{l} \mathsf{CH}_4 + e^{\scriptscriptstyle-} \rightarrow \mathsf{CH}_4^{+} + 2e^{\scriptscriptstyle-} \\ \mathsf{CH}_4^{+} + \mathsf{CH}_4 \rightarrow \mathsf{CH}_5^{+} + \mathsf{CH}_3 \\ \mathsf{CH}_5^{+} + \mathsf{M} \rightarrow \mathsf{MH}^{+} + \mathsf{CH}_4 \end{array}$

This soft ionization technique allows obtaining of intensive molecular ion

In most cases provides higher sensitivity of determination compared to EI

Method is perfect for analysis of non-stable compounds and molecules that can not be efficiently ionized by El ionization

GC-MS and LC-MS

Electrospray ionization

Identification of analytes (EI)

Full mass spectrum is collected in every point of total ion chromatogram (TIC)

Very pure spectra of compounds are obtained due to pre- separation of analytes > reliable identification

Mass spectral libraries (>700K spectra, >300K compounds): automated identification of all peaks

Deconvolution of peaks > detection and identification of several sub-peaks in larger or overlapping peaks using differences in mass spectra of each peak.

GC-MS and LC-MS

Every point of TIC has mass spectrum

Difference of TIC and SIM chromatograms

MS detection modes

Scan in the desired m/z range:

efficient identification; quantification VS by normalization; high baseline NOS

low sensitivity (>10 pg);

Selected ion monitoring (SIM):

high selectivity; low baseline noise; high sensitivity (<1 pg); identification by RT; confirmation by MS ions ratios

OR

Synchronous SIM/Scan

All above listed advantages;

Lower scanning rate and precision.

GC - High Resolution MS

